EFFECT OF PGI₂ AND STABLE ENDOPEROXIDE ANALOGUES ON CYCLIC NUCLEOTIDE LEVELS IN CLONAL CELL LINES OF CNS ORIGIN

Rainer ORTMANN

Pharmakologisches Institut der Universität Freiburg, Hermann Herderstrasse 5, D-78 Freiburg, FRG

Received 20 April 1978

1. Introduction

The effects of prostaglandins of the E, A and F series on the adenylate and guanylate cyclase system of various cloned cell lines in culture have been described [1-6]. Since the detection of the endoperoxides PGG₂ and PGH₂ [7], thromboxane A₂ [8] and PGI₂ (prostacyclin) [9-11], many laboratories worked on the effects of these new prostaglandins on platelet aggregation and platelet adenylate cyclase [12-18]. Little is know however about the effects of these prostaglandins on cyclic nucleotide levels in other systems. We therefore compared the effect of PGI₂ and 2 endoperoxide analogues (U 44069 and U 46619) with the effects of prostaglandins of the A, B, E and F series on cAMP and cGMP levels of the murine neuroblastoma cell line N4TG3 and the human astrocytoma cell line 1321N1. We show that PGI₂ is an extremely potent stimulator of cAMP accumulation in N4TG3 cells, while it is relatively inactive in 1321N1 cells. Furthermore cGMP accumulation is stimulated by PGI₂ and PGE₁ in the neuroblastoma cell line.

2. Materials and methods

2.1. Prostaglandins

All prostaglandins were a gift from the Upjohn Company, MI. 6β H-5, 6α -dihydro-PGI₂ was obtained from the Carlo Erba institute, Milano, which also supplied a sample of PGI₂. Stock solutions (10 mM) of prostaglandins except PGI₂ were prepared in ethanol and kept at -20°C. PGI₂ and 6β H-5, 6α

dihydro-PGI₂ were dissolved in cold 0.05 M Tris buffer, pH 9.4, immediately before each experiment.

2.2. Cell culture

The isolation and growth conditions of human astrocytoma cell line 1321N1 [1,10] and the 6-thioguanine resistant neuroblastoma cell line N4TG3 [20,21] have been described. 1321N1 cells were obtained from R. B. Clark, Worcester, MA. N4TG3 cells were from B. Hamprecht, München. 35 mm 'Lux' plastic dishes were seeded with 1 × 10⁵ (N4TG3) or 2 × 10⁵ (1321N1) cells in 2 ml growth medium and grown for 3 days.

2.3. Experimental incubations

For experimental incubations cells were washed with serum free growth medium and challenged with prostaglandins for 2 min at 37°C in serum free growth medium containing 1 mM isobutylmethyl xanthine (IBMX). Incubations were stopped by aspirating the medium and adding 1 ml 5% trichloroacetic acid (TCA). The TCA was extracted with water saturated ether and used for cAMP and cGMP radioimmunoassay without further purification.

2.4. Cyclic nucleotide determination

For cAMP and cGMP RIA 10-500 μ l of the ether-extracted TCA extract were incubated overnight at 0°C with 20 000 cpm ¹²⁵I-labeled-2'-O succinyl cyclic cAMP or cGMP tyrosine methyl ester and cAMP or cGMP antiserum (final dilution, 1:200 000) in total vol. 2 ml in isotonic phosphate buffer, pH 7.4, containing 1 g gelatine/liter. For the cGMP RIA the acetylation step in [22] was included.

Bound and free ¹²⁵I-labeled-ligand was separated by the addition of 0.2 ml charcoal suspension (Aktivkohle, E. Merck, 20 mg/ml phosphate buffer) and immediate centrifugation.

The inhibitor of the binding of ¹²⁵I-labeled-ligands in the cAMP and cGMP RIA, respectively, was adsorbed by charcoal treatment, destroyed by beef heart phosphodiesterase. Serial dilutions of the TCA extracts inhibited the binding to the same degree as authentic cAMP or cGMP. Addition of known amounts of cAMP or cGMP standards to TCA extracts after the ether extraction step showed a complete recovery of the added cyclic nucleotides. Crossreactions of both antisera with other nucleotides and nucleosides are summarized in table 1.

3. Results

3.1. Effects of PGI₂ on cAMP

Stimulation of cAMP accumulation by PGE_1 in N4TG3 cells [21,23] and by PGE_1 , E_2 , A_1 and $F_{2\alpha}$ in 1321N1 cells [1] has been reported. The data of fig.1 compare the effects of PGI_2 and its stable end-product 6-keto $F_{1\alpha}$ with PGE_1 during a 2 min incubation period in both cell lines. While PGI_2 is a more potent stimulator of adenylate cyclase than PGE_1 in N4TG3 cells (ED_{50} 3 nM), its ED_{50} in 1321N1 cells (10 μ M) is significantly higher than the

Table 1
Cross-reactions of the cAMP and cGMP antiserum with various nucleotides and nucleosides

	% Cross-reaction			
Inhibitor	cAMP antiserum	cGMP antiserum		
3':5' cAMP	100	0.01		
3':5' cIMP	1	3		
3':5' cGMP	< 0.001	100		
Guanosine)	0.004		
2':3' cAMP		1		
2':3' cGMP		1		
ATP, ADP, AMP	< 0.001	< 0.002		
GTP, GDP, GMP	ł	1		
Adenosine)		

Assay conditions as described in 2.4; final antiserum dilution 1:200 000

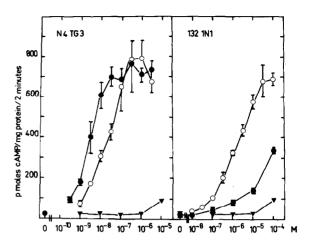


Fig.1. The effect of PGE_1 (0—0-0), PGI_2 (0—0-0) and 6-keto F_{10} (4—4—4) on cAMP accumulation in N4TG3 cells (left) and 1321N1 cells (right). Results are means \pm SD of 3 dishes assayed in duplicate.

 ED_{50} measured for PGE_1 (1 μ M). 6-Keto $F_{1\alpha}$ has only small effects on cAMP levels in both cell types. At high concentrations the stable PGI_2 derivative 6β H-5, 6α -dihydro- PGI_2 stimulates cAMP accumulation to the same degree as PGI_2 in both cell lines (table 2). Its ED_{50} in N4TG3 cells is however about 100 times higher than the ED_{50} determined for PGI_2 (data not shown).

3.2. Effects of other prostaglandins on cAMP

Table 2 compares the effects of maximal concentrations of various prostaglandins on the adenylate cyclase of both cell lines. It confirms the data reported earlier on PGE₁, E₂, A₁ and PGF₂₀ stimulated cAMP accumulation in 1321N1 cells [1] and shows that the pattern of prostaglandin stimulation in N4TG3 cells is the same as reported for the N4TG3 clone [3]. It demonstrates that PGB₁ is a rather poor stimulator in both cell lines and that the 2 stable endoperoxide analogues U 44069 and U 44619 have a different effect on the cAMP level of the astrocytoma line: At high concentration (30 μ M) the 9α , 11α -epoxymethano derivative U 44069 has a stimulatory effect, while the 11α,9α-epoxymethano compound U 46619 is inactive (table 2). In N4TG3 cells both analogues have the same, small stimulatory effect on cAMP accumulation at 10 μ M.

Table 2
Effects of different prostaglandins on cAMP levels in 1321N1 and N4TG3 cells

Prostaglandin	% PGE ₁ response						
	1321N1 cells (30 μM)		N4TG3 cells (10 µM)				
	Exp. 1 ^a	Exp. 2 ^a	Exp. 1 ^b	Exp. 2 ^a	Exp. 3 ^b		
PGE,	100 ± 14	100 ± 13	100 ± 14	100 ± 9	100 ± 4		
PGE,	101 ± 14	89 ± 9	86 ± 6	77 ± 11	60 ± 3		
PGA ₁	83 ± 10	66 ± 6	83 ± 4	75 ± 7	-		
PGB,	26 ± 3	22 ± 3	44 ± 2	33 ± 2	-		
PGF ₂₀	9 ± 1		36 ± 2	38 ± 4	_		
PGI ₂	42 ± 5	61 ± 11	129 ± 14	129 ± 9	111 ± 27		
6-keto F _{1α}	9 ± 1	5 ± 1	10 ± 1	29 ± 2	_		
6βΗ 5,6α-							
dihydro-PG	I ₂ 46 ± 3	38 ± 5	_	111 ± 8	98 ± 11		
U 44069	29 ± 2	_	20 ± 11	11 ± 1	_		
U 46619	5 ± 1	_	11 ± 1	10 ± 1			
None	6 ± 1	6 ± 2	4 ± 1	4 ± 1	3 ± 1		

a n = 4, $\bar{x} \pm SD$, each dish assayed in duplicate

cAMP accumulation at 30 μ M (1321N1) and 10 μ M (N4TG3) prostaglandin concentration is compared. In both cell lines cAMP levels in the presence of PGE₁ were set as 100% for each experiment. Maximal stimulation of cAMP accumulation was 398 pmol/mg protein/2 min in 1321N1 cells and varied between 428 and 617 pmol/mg protein/2 min in N4TG3 cells

3.3. Effects on cGMP levels

Figure 2 depicts the effects of PGE₁, PGI₂ and 6 keto-F₁₀ on cGMP levels in both cell types. While there is a barely measurable level of cGMP in the astrocytoma cell line (0.3 pmol cGMP/mg protein), the basal cGMP level in N4TG3 cells after a 2 min incubation period in the presence of 1 mM IBMX was 20-30-times higher (6.3-10.9 pmoles cGMP/mg protein). In the absence of IBMX cGMP and cAMP levels were however significantly lower (1.3 pmol cGMP/mg protein), confirming the high phosphodiesterase activity in N4TG3 cells described [21,23]. Furthermore there was no detectable influence of any of the prostaglandins on the cGMP level in 1321N1 cells (table 3, fig.2), while PGE₁ and PGI₂ caused a 5-7-fold increase in cGMP levels in N4TG3 cells at 10 µM. While PGI₂ had a higher affinity to the receptor mediating this effect, the app. V_{max} of PGE₁ was greater in most experiments (table 3, fig.2). In preliminary experiments no stimulation of cGMP levels by 10 µM PGI₂ was found, when Krebs-Ringer solution containing 1 mM IBMX [24]

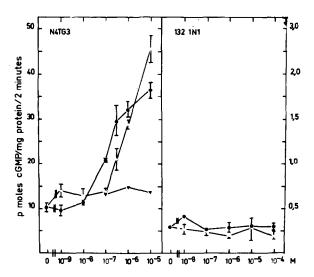


Fig. 2. The effect of PGE_1 ($\circ \circ \circ \circ$), PGI_2 ($\bullet \circ \circ \circ \circ$) and 6-keto- F_{10} ($\bullet - \bullet \circ \circ$) on cGMP accumulation in N4TG3 (left) and 1321N1 cells (right). Results are the average of 2 dishes, or means of 3 dishes \pm SD assayed in duplicate (N4TG3) or single determinations (1321N1). Note the different scale for N4TG3 and 1321N1 results.

 $b n = 3, \bar{x} \pm SD$, each dish assayed in duplicate

Table 3
Effects of various prostaglandins on cGMP levels in 1321N1 and N4TG3 cells

Prostaglandins	(pmol cGMP/mg protein/2 min)						
	1321N1 cells		N4TG3 cells				
	Exp. 1 ^a	Exp. 2 ^a	Exp. 1 ^b	Exp. 2 ^a	Exp. 3 ^c		
PGE,	0.34 ± 0.02	0.23 ± 0.03	31.1 ± 5.0	38.3 ± 0.9	55.6 ± 4.8		
PGE,	0.37 ± 0.02	0.25 ± 0.02	9.6 ± 1.8	11.0 ± 1.3	13.1 ± 0.7		
PGA ₁	0.32 ± 0.02	_	7.6 ± 2.0	9.9 ± 1.6	~		
PGB,	0.36 ± 0.04	_	7.0 ± 0.8	7.3 ± 1.9			
PGF ₂₀	0.37 ± 0.03	_	8.8 ± 0.6	9.6 ± 1.0	~		
PGI ₂	0.34 ± 0.01	0.29 ± 0.03	26.4 ± 2.6	39.1 ± 2.7	36.7 ± 4.1		
6-Keto F _{1α}	0.36 ± 0.06	_	7.4 ± 0.8	8.6 ± 0.8	~		
6βΗ 5,6α-							
dihydro-PGI ₂	0.34 ± 0.05	0.32 ± 0.09	_	14.8 ± 2.4	14.9 ± 1.8		
U 44069	0.37 ± 0.04		8.2 ± 0.3	8.9 ± 2.2	-		
U 46619	0.36 ± 0.03	_	7.4 ± 0.9	9.3 ± 1.1	~		
None ^d	0.34	0.30	6.3	10.9	8.3		

a n = 4, $\bar{x} \pm SD$, single determinations

Experiment numbers refer to the same experiments as listed in table 2 for the cAMP system

was used as incubation medium. In the absence of calcium cGMP levels in Krebs-Ringer solution were even lower.

4. Discussion

 PGI_2 has been shown to be a more potent stimulator of platelet adenylate cyclase than PGE_1 [13–15]. The main point of this report is to extent this comparison to other adenylate cyclase systems. The data of fig.1 and table 2 show that like in the platelets PGI_2 is also in N4TG3 cells a more potent agonist than PGE_1 . The ED_{50} (3 nM) for PGI_2 in N4TG3 cells is 10-times lower than in the human platelet adenylate cyclase system [13]. However in 1321N1 cells PGI_2 is substantially less potent than PGE_1 .

Beside the difference in affinity (ED_{50}) of various prostaglandins (compare ED_{50} for PGE₁ in both cell lines) and their effects at maximal concentrations $(V_{\rm max})$ (table 2, 2-4), the marked difference in potency of PGI₂ found in the 2 cell lines, may represent an interesting characteristic of different types of prostaglandin receptors. Together

with the information on antagonists of prostaglandin effects [26], on the stereospecificity for different prostaglandins (compare the effects of U 44069 and U 46619) and binding studies with labeled prostaglandins [3], these data may help to classify multiple types of prostaglandin receptors linked to the adenylate or guanylate cyclase system.

The data of table 2 confirm the low activity of the endoperoxide analogues U 46619 and U 44069 to stimulate cAMP accumulation found in rat osteogenic sarcoma cells [25]. In contrast to the adenylate cyclase inhibiting effect of PGG₂ in platelets [16] and of PGH₂ in adipocyte ghosts [17] $10\,\mu\text{M}$ U 44069 did not alter the stimulation of cAMP or cGMP accumulation in N4TG3 cells by 10 nM or $1\,\mu\text{M}$ PGI₂ (data not shown).

Simultaneous stimulation by PGE_1 of cAMP and cGMP accumulation has been reported [4]. Basal as well as stimulated cGMP levels in N4TG3 cells are in the same concentration range as described for N1E115 neuroblastoma cells [4]. Our data characterize further the receptor mediating the stimulation of cGMP accumulation by PGE_1 and PGE_2 :the affinity of PGI_2 (ED_{50} 0.2 μ M) and PGE_1 (ED_{50} 2 μ M) for this

b n = 3, $\bar{x} \pm SD$, single determinations

 $^{^{\}rm C}$ n=3, $\bar{x}\pm{\rm SD}$, duplicate determinations

 $d_{n=2}$

receptor is 100 times lower than in the cAMP system. The receptor displays a similar specificity for PGE₁ and PGI₂ as the receptor which mediates the stimulation of cAMP accumulation, because at 10 μ M only PGE₁, PGI₂ and 6 β H-5,6 α -dihydro-PGI₂ stimulate consistently cGMP levels. In contrast to the cAMP system 6 β H-5,6 α -dihydro-PGI₂ stimulates significantly less than PGI₂. Preliminary data show that while the cAMP accumulation is not altered by the use of Krebs-Ringer solution as incubation medium, no stimulation of cGMP levels is observed under these conditions. The reason for this observation is unknown.

Acknowledgement

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 70).

References

- [1] Ortmann, R. and Perkins, J. P. (1977) J. Biol. Chem. 252, 6018-6025.
- [2] Minna, J. D. and Gilman, A. G. (1973) J. Biol. Chem. 248, 6618-6625.
- [3] Brunton, L. L., Wiklund, R. A., Van Arsdale, P. M. and Gilman, A. G. (1976) J. Biol. Chem. 251, 3037-3044.
- [4] Matsuzawa, H. and Nirenberg, M. (1975) Proc. Natl. Acad. Sci. USA 72, 3472-3476.
- [5] Gilman, A. G. and Nirenberg, M. (1974) Nature 234, 356-357.
- [6] Kuehl, F. A. jr (1974) Prostaglandins 5, 325-340.
- [7] Hamberg, M., Svensson, J., Wakabayashi, T. and Samuelsson, B. (1974) Proc. Natl. Acad. Sci. USA 71, 345-349.

- [8] Hamberg, M., Svensson, J. and Samuelsson, B. (1975) Proc. Natl. Acad. Sci. USA 72, 2994—2998.
- [9] Johnson, R. A., Morton, D. R., Kinner, J. H., Gorman, R. R., McGuire, J. C., Sun, F. F., Whittaker, N., Bunting, S., Salmon, J., Moncada, S. and Vane, J. R. (1976) Prostaglandins 12, 915-928.
- [10] Moncada, S., Gryglewski, R., Bunting, S. and Vane, J. R. (1976) Nature 263, 662-665.
- [11] Gryglewski, R., Bunting, S., Moncada, S., Flower, R. J. and Vane, J. R. (1976) Prostaglandins 12, 685-713.
- [12] Miller, O. V., Johnson, R. A. and Gorman, R. R. (1977) Prostaglandins 13, 599-609.
- [13] Gorman, R. R., Bunting, S. and Miller, O. V. (1977) Prostaglandins 13, 377-388.
- [14] Lapetina, E. G., Schmitges, C. J., Chandrabose, K. and Cuatrecasas, P. (1977) Biochem. Biophys. Res. Commun. 76, 828-835.
- [15] Tateson, J. E., Moncada, S. and Vane, J. R. (1977) Prostaglandins 13, 389-397.
- [16] Miller, O. V. and Gorman, R. R. (1976) J. Cycl. Nucl. Res. 2, 79-87.
- [17] Gorman, R. R., Hamberg, M. and Samuelsson, B. (1975)J. Biol. Chem. 250, 6460-6463.
- [18] Best, L. C., Martin, T. J., Russell, R. G. G. and Preston, F. E. (1977) Nature 267, 850-852.
- [19] Ponten, J. and MacIntyre, E. H. (1968) Acta Pathol. Microbiol. Scand. 74, 465-486.
- [20] Amano, T., Hamprecht, B. and Kemper, W. (1974) Exp. Cell Res. 85, 399-408.
- [21] Hamprecht, B. and Schultz, J. (1973) FEBS Lett. 34, 85-89.
- [22] Harper, J. F. and Brooker, G. (1975) J. Cycl. Nucl. Res. 1, 207-218.
- [23] Schultz, J. and Hamprecht, B. (1973) Naunyn-Schmiedebergs Arch. Pharmacol. 278, 215-225.
- [24] Umbreit, W. W., Burris, R. H. and Stauffer, J. F. (1964) Manometric Techniques, 4th edn., p. 132, Burgess Publ
- [25] Atkins, D. and Martin, T. J. (1977) Prostaglandins 13, 861-871.
- [26] Sanner, J. H. (1974) Arch. Int. Med. 133, 133-146.